MTEC Energia

Medindo a resistividade do solo para fins de aterramento elétrico

A normalização técnica estabelece os requisitos obrigatórios para medição da resistividade e determinação da estratificação do solo.



Por Mauricio Ferraz de Paiva

O aterramento tem como função proteger os equipamentos elétricos, usuários e garantir o bom funcionamento do circuito. Existem tipos de aterramento distintos, sendo alguns deles com variações. É uma das formas mais seguras de interferência na corrente elétrica para proteger e garantir o bom funcionamento da instalação, além de atender as exigências das normas técnicas.

Em resumo, o aterramento elétrico significa colocar as instalações e equipamentos no mesmo potencial, de modo que a diferença de potencial entre a terra e o equipamento seja o menor possível. O aterramento (terra) é o conector com diferença de potencial igual a zero, a diferença entre ele e o neutro é que ele não altera o seu valor por meio de problemas que podem ser eliminados para a terra, o que não permite que fugas de energia fiquem na superfície de aparelhos elétricos.

A NBR 7117 (NB716) de 07/2012 – Medição da resistividade e determinação da estratificação do solo estabelece os requisitos para medição da resistividade e determinação da estratificação do solo. Fornece subsídios para aplicação em projetos de aterramentos elétricos. A sua aplicabilidade pode ter restrições em instalações de grandes dimensões, onde são necessários recursos de geofísica não abordados. Não se aplica a estratificações oblíquas e verticais. Entende-se por projetos de malhas de aterramento de instalações de grandes dimensões, os parques eólicos, complexos hidrelétricos e industriais.

O solo é um meio geralmente heterogêneo, de modo que o valor de sua resistividade varia de local para local em função do tipo, nível de umidade, profundidade das camadas, idade de formação geológica, temperatura, salinidade e outros fatores naturais, sendo também afetado por fatores externos como contaminação e compactação. Exemplos de variação da resistividade em função de alguns destes parâmetros são mostrados na tabela e na figura.



A determinação dos valores das resistividades do solo e de sua estratificação é de importância fundamental para o cálculo das características de um sistema de aterramento, subsidiando o desenvolvimento de projetos, bem como a determinação de seus potenciais de passo e toque. Em geral, o solo é constituído por diversas camadas, cada uma apresentando um certo valor de resistividade e uma espessura própria.

O valor de resistividade do solo é determinado por meio de medições, cujos resultados recebem um tratamento matemático, de modo a se obter a estratificação do solo em camadas paralelas ou horizontais, de diferentes resistividades (p) e de espessuras (e) definidas. Considerando-se, portanto, a heterogeneidade do solo, verificada pela variação de sua resistividade à medida em que suas camadas são pesquisadas, há necessidade de procurar meios e métodos que determinem essas variações, sem que seja necessário lançar mão de prospecções geológicas, o que, decerto, inviabilizaria os estudos para implantação de sistemas de aterramento.

Assim sendo, foram desenvolvidos métodos de prospecção geoelétricos que se caracterizam pela facilidade operacional e precisão fornecidas. A complexidade adicional causada pelos solos não uniformes é comum, e apenas em poucos casos a resistividade é constante com o aumento da profundidade, ou seja, homogênea. Basicamente, os métodos que utilizam sondagem elétrica procuram determinar a distribuição vertical de resistividade, abaixo do ponto em estudo, resultando então em camadas horizontais, geralmente causadas por processos sedimentares.

Dispondo-se de dois eletrodos de corrente pelos quais se faz circular uma corrente I, e de dois eletrodos de potencial que detectarão uma diferença de potencial V, pode-se mostrar que a resistividade do solo é proporcional a V/I, sendo o fator de proporcionalidade uma função do método empregado. Em função de pesquisas já realizadas pode-se dizer que metade da corrente injetada no solo, circula acima de uma profundidade igual à metade da distância entre eletrodos, e que grande parte da corrente flui acima da profundidade igual à separação entre eles.

Para estas conclusões pressupõe-se a condição de solos homogêneos, não sendo as mesmas condições válidas para solos estratificados, nos quais a densidade de corrente varia de acordo com a distribuição de resistividades. Os gradientes de potencial da superfície do solo, dentro ou adjacentes a um eletrodo, são principalmente uma função da resistividade da camada superficial do solo.

Por outro lado, a resistência do eletrodo de terra é primariamente uma função de suas dimensões e das resistividades das camadas mais profundas do solo, especialmente se o eletrodo for de grandes dimensões. Estratificações oblíquas e verticais, derivadas de acidentes geológicos, não são objeto de estudo desta norma. São considerados, os seguintes métodos de medição: amostragem física do solo; método da variação de profundidade; método dos dois eletrodos; método dos quatro eletrodos, com os seguintes arranjos: arranjo do eletrodo central; arranjo de Lee; arranjo de Wenner; arranjo Schlumberger – Palmer.

O método da variação de profundidade, também conhecido como “método de três eletrodos”, consiste em um ensaio de resistência de terra executado para várias profundidades (L) do eletrodo de ensaio de diâmetro (d). O valor da resistência medida (Rm) refletirá a variação da resistividade, relativa ao incremento de profundidade. Usualmente, o eletrodo de ensaio é uma haste devido à facilidade de sua cravação no solo. As medições citadas podem ser executadas usando um dos métodos para medição da resistência de aterramento, descritos na NBR 15749.

O método de variação de profundidade fornece informações úteis sobre a natureza do solo na vizinhança da haste. Contudo, se um grande volume de solo precisar ser investigado, é preferível que se use o método dos quatros eletrodos, já que o cravamento de hastes longas não é prático. Este método supõe que o aterramento a ser ensaiado seja composto de uma haste de aterramento de comprimento L. O raio r da haste é pequeno ao se comparar com L. Os valores de resistividade obtidos com esse método são médios e não podem ser extrapolados.

O método dos quatro eletrodos (geral) é o mais aplicado para medição da resistividade média de grandes volumes de terra. Pequenos eletrodos são cravados no solo a pequenas profundidades, alinhados e espaçados em intervalos não necessariamente iguais. A corrente de ensaio I é injetada entre os dois eletrodos externos e a diferença de potencial V é medida entre os dois eletrodos internos com um potenciômetro ou um voltímetro de alta impedância.

O arranjo de Schlumberger é uma disposição para o método dos quatro pontos onde o espaçamento central é mantido fixo (normalmente igual a 1,0 m), enquanto os outros espaçamentos variam de forma uniforme. Daí uma alta sensibilidade na medição dos potenciais é necessária, especialmente se a fonte do terrômetro for de baixa potência.

O arranjo Schlumberger – Palmer é usado para medir resistividades com grandes espaçamentos, especialmente em terrenos de alta resistividade (da ordem de ou superior a 3 000 Wm), com os eletrodos de potencial situados muito próximos aos eletrodos de corrente correspondentes para melhorar a resolução da medida da tensão. Mesmo assim, os terrômetros convencionais, de baixa potência (com corrente compatível com a sensibilidade do aparelho), dificilmente operam de forma eficiente.

Deve ser considerada a variação sazonal da resistividade do solo, devendo ser realizada uma medição no período mais crítico. De maneira geral, a situação mais crítica é a de solo seco, que ocorre após um período de sete dias sem chuvas. Esse período deve ser observado sempre para comprovação da situação mais crítica, caso seja necessária.

Para estimativa de projeto ou casos especiais, podem ser efetuadas medições com o solo na situação que não seja a mais crítica. Uma medição posterior é necessária, caso acordado entre as partes. Em áreas onde seja necessário corrigir o nível do terreno, pelo menos uma das medições deve ser realizada após a conclusão da terraplenagem.

Pontos de uma mesma área em que sejam obtidos valores de resistividade com desvio superior a 50% em relação ao valor médio das medições realizadas podem caracterizar uma subárea específica, devendo ser realizadas medições complementares ao seu redor, para ratificação do resultado; se isso não for possível, considerar a conveniência de descartar a linha de medição. No caso de medições de resistividade próximas a malhas existentes, objetos condutores enterrados ou cercas aterradas, deve-se afastar a linha de medição a uma distância onde as interferências sejam reduzidas para evitar ou atenuar os efeitos da proximidade com massas metálicas enterradas próximo à linha de medição.

No caso de medições de resistividade próximas a aterramentos de redes de energia e de telecomunicações, de linhas de transmissão ou de quaisquer outras fontes de interferências, deve-se afastar a linha de medição e utilizar instrumentos que possuam filtros que separem os resultados do sinal injetado para evitar ou atenuar os efeitos da proximidade com circuitos potencialmente interferentes. Para projetos de linhas de transmissão devem ser realizadas duas medições em direções ortogonais nos pontos escolhidos, preferencialmente no sentido longitudinal ao encaminhamento da linha de transmissão e outra perpendicular, que devem coincidir com a localização das estruturas.

Cada linha de medição deve abranger diferentes distâncias entre eletrodos, que se estendam no mínimo até a maior dimensão (diagonal) do terreno a ser ocupado pela malha. A linha de medição deve ser prospectada a partir de uma distância entre eletrodos de 1 m e prosseguir, se possível, em potência de 2, a saber: 1, 2, 4, 8, 16, 32, 64 m etc. Podem ser utilizadas distâncias intermediárias entre eletrodos.

Condições diferentes das acima indicadas só podem ser definidas sob justificativas técnicas e após expressa concordância entre os agentes envolvidos, observadas as condições específicas do local. Na execução das medições devem-se anotar todas as características locais e os resultados obtidos em planilhas, como a apresentada no Anexo B.

Durante a medição de resistividade devem ser tomados alguns cuidados, como: não fazer medições sob condições atmosféricas adversas, tendo-se em vista a possibilidade de ocorrência de descargas atmosféricas; utilizar equipamentos de proteção individual (EPI) compatíveis com o tipo e o local da medição a ser realizada; evitar que pessoas estranhas e animais aproximem-se do local; não tocar nos eletrodos durante a medição.

A interpretação dos resultados obtidos no campo é a parte mais crítica do processo de medição e, consequentemente, necessita de maiores cuidados na sua validação. Como já mencionado, a variação da resistividade do solo pode ser grande e complexa por causa da sua heterogeneidade e, portanto, há necessidade de se estabelecer uma equivalência para estrutura do solo.

Esta equivalência depende: da exatidão e extensão das medições; do método usado; da complexidade matemática envolvida; da finalidade das medições. Quando o solo for do tipo não homogêneo, é recomendável a disponibilidade de ferramentas computacionais adequadas.

A interpretação do método dos quatro eletrodos é similar àquela do método de profundidade já descrito. No caso do arranjo de Wenner, a resistividade medida é registrada em função do espaçamento a do eletrodo. A curva resultante indica a estrutura do solo. A interpretação da curva obtida pode indicar desvios nas medições ou necessidade de informação adicional sobre o solo, inclusive de medições em profundidades adicionais.

Mauricio Ferraz de Paiva é engenheiro eletricista, especialista em desenvolvimento em sistemas, presidente do Instituto Tecnológico de Estudos para a Normalização e Avaliação de Conformidade (Itenac) e presidente da Target Engenharia e Consultoria – mauricio.paiva@target.com.br
Emerson Tormann

Técnico Industrial em Elétrica e Eletrônica, especializado em Tecnologia da Informação e Comunicação. Atualmente, é Editor-Chefe na Atualidade Política Comunicação e Marketing Digital Ltda. Possui ampla experiência como jornalista e diagramador, com registro profissional DRT 10580/DF. https://etormann.tk | https://atualidadepolitica.com.br

Postagem Anterior Próxima Postagem